Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3

نویسندگان

چکیده

<p style='text-indent:20px;'>On a closed <inline-formula><tex-math id="M2">\begin{document}$ 3 $\end{document}</tex-math></inline-formula>-dimensional Riemannian manifold id="M3">\begin{document}$ (M,g) $\end{document}</tex-math></inline-formula> we investigate the limit of Einstein-Lichnerowicz equation</p><p style='text-indent:20px;'><disp-formula> <label>1</label> <tex-math id="E1"> \begin{document}$ \begin{equation} \triangle_g u + h = f u^5 \frac{\theta a}{u^7} \end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>as momentum parameter id="M4">\begin{document}$ \theta \to 0 $\end{document}</tex-math></inline-formula>. Under positive mass assumption on id="M5">\begin{document}$ +h $\end{document}</tex-math></inline-formula>, prove that sequences solutions to this equation converge in id="M6">\begin{document}$ C^2(M) as id="M7">\begin{document}$ either zero or solution limiting id="M8">\begin{document}$ We also minimizing (1) constructed by author [<xref ref-type="bibr" rid="b15">15</xref>] converges uniformly id="M9">\begin{document}$ $\end{document}</tex-math></inline-formula>.</p>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Perturbations for Hammerstein Equations with Singular Nonlinear Term

We consider a singular elliptic perturbation of a Hammerstein integral equation with singular nonlinear term at the origin. The compactness of the solutions to the perturbed problem and, hence, the existence of a positive solution for the integral equation are proved. Moreover, these results are applied to nonlinear singular homogeneous Dirichlet problems.

متن کامل

Singular Nonlinear Elliptic Equations in R

This paper deals with existence, uniqueness and regularity of positive generalized solutions of singular nonlinear equations of the form −∆u + a(x)u = h(x)u−γ in R where a, h are given, not necessarily continuous functions, and γ is a positive number. We explore both situations where a, h are radial functions, with a being eventually identically zero, and cases where no symmetry is required fro...

متن کامل

Singular perturbation problems for nonlinear elliptic equations in degenerate settings

Here N ≥ 1, g(s) ∈ C(R,R) is a function with a subcritical growth, V (x) ∈ C(R ,R) is a positive function and 0 < ε 1. Among solutions of (0.1)ε, we are interested in concentrating families (uε) of solutions, which have the following behavior: (i) uε(x) has a local maximum at xε ∈ R and xε converges to some x0 ∈ R as ε → 0. (ii) rescaled function vε(y) = uε(εy + xε) converges as ε → 0 to a solu...

متن کامل

Some remarks on singular solutions of nonlinear elliptic equations. I

We study strong maximum principles for singular solutions of nonlinear elliptic and degenerate elliptic equations of second order. An application is given on symmetry of positive solutions in a punctured ball using the method of moving planes. Mathematics Subject Classification (2000). 35J69, 58J05, 53C21, 35J60.

متن کامل

On a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two

In this paper we establish a Liouville type theorem for fully nonlinear elliptic equations related to a conjecture of De Giorgi in IR2. We prove that if the level lines of a solution have bounded curvature, then these level lines are straight lines. As a consequence, the solution is one-dimensional. The method also provides a result on free boundary problems of Serrin type.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2021

ISSN: ['1553-5231', '1078-0947']

DOI: https://doi.org/10.3934/dcds.2021069